1、第一个重要极限的公式:lim sinx / x = 1 (x->0)。当x→0时,sin / x的极限等于1,特别注意的是x→∞时,1 / x是无穷小,根据无穷小的性质得到的极限是0。
2、第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)。当 x → ∞ 时,(1+1/x)^x的极限等于e;或当 x → 0 时,(1+x)^(1/x)的极限等于e。
1、第一个重要极限的公式:lim sinx / x = 1 (x->0)。当x→0时,sin / x的极限等于1,特别注意的是x→∞时,1 / x是无穷小,根据无穷小的性质得到的极限是0。
2、第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)。当 x → ∞ 时,(1+1/x)^x的极限等于e;或当 x → 0 时,(1+x)^(1/x)的极限等于e。